5 A Primal-Dual Active-Set Multigrid Method for Control-Constrained Optimal Control Problems
ثبت نشده
چکیده
In this chapter we consider optimal control problems with additional inequality constraints imposed on the control unknown u and for their efficient solution we combine a primal-dual active-set strategy with the multigrid method developed in the previous chapter. Control-constraints are specified by the condition u ∈ Uad, where the set of admissible controls Uad ⊂ L(Ω) is a proper subset of L(Ω) and is assumed to be closed and convex. In particular, we consider the problem
منابع مشابه
Primal-Dual Strategy for State-Constrained Optimal Control Problems
State constrained optimal control problems represent severe analytical and numerical challenges. A numerical algorithm based on an active set strategy involving primal as well as dual variables, suggested by a generalized Moreau-Yosida regularization of the state constraint is proposed and analyzed. Numerical examples are included.
متن کاملA Comparison of Interior Point Methods and a Moreau-Yosida Based Active Set Strategy for Constrained Optimal Control Problems
In this note we focus on a comparison of two eecient methods to solve quadratic constrained optimal control problems governed by elliptic partial-diierential equations. One of them is based on a generalized Moreau-Yosida formulation of the constrained optimal control problem which results in an active set strategy involving primal and dual variables. The second approach is based on interior poi...
متن کاملMesh Independence and Fast Local Convergence of a Primal-dual Active-set Method for Mixed Control-state Constrained Elliptic Control Problems
A class of mixed control-state constrained optimal control problems for elliptic partial differential equations arising, for example, in Lavrentiev-type regularized state constrained optimal control is considered. Its numerical solution is obtained via a primal-dual activeset method, which is equivalent to a class of semi-smooth Newton methods. The locally superlinear convergence of the active-...
متن کاملThe Length of the Primal-dual Path in Moreau-yosida-based Path-following for State Constrained Optimal Control
A priori estimates on the length of the primal-dual path that results from a MoreauYosida approximation of the feasible set for state constrained optimal control problems are derived. These bounds depend on the regularity of the state and the dimension of the problem. Numerical results indicate that the bounds are indeed sharp and are typically attained in cases where the active set consists of...
متن کاملPreconditioning for partial differential equation constrained optimization with control constraints
Optimal control problems with partial differential equations play an important role in many applications. The inclusion of bound constraints for the control poses a significant additional challenge for optimization methods. In this paper, we propose preconditioners for the saddle point problems that arise when a primal– dual active set method is used. We also show for this method that the same ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009